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We consider the problem of the interaction of a stationary viscous 
fluid with an elastic solid that undergoes large displacement. The 
fluid is modeled by the stationary incompressible Navier-Stokes 
equations in an Eulerian frame of reference, while a Lagrangian 
reference frame and large displacement-small strain theory is used 
for the solid. A variational formulation of the problem is developed 
that ensures satisfaction of continuity of interface tractions and 
velocities. The variational formulation is approximated by a Galerkin 
finite element method, yielding a system of nonlinear algebraic 
equations in unknown fluid velocities and pressures and solid dis- 
placements. A Newton-like method is introduced for solution 
of the discrete system. The method employs a modified Jacobian 
that enables decomposition into separate fluid and solid sub- 
domains. This domain decomposition avoids possible ill-condition- 
ing of the Jacobian, as well as the need to compute and store 
geometric coupling terms between fluid and interface shape. The 
capability of the methodology is illustrated by solution of a problem 
of the flow-induced large displacements of an elastic infinite 
cylinder. © 1995 Academic Press, Inc. 

1. INTRODUCTION 

Despite its importance, the problem of modeling the nonlin- 
ear interaction of a viscous fluid with a solid undergoing large 
deformation has remained a challenging problem in mechanics. 
Its resolution is of significant practical importance to such 
disciplines as aerospace, marine, automotive, and wind engi- 
neering. Such problems may arise, for instance, in the large- 
amplitude vibration of flexible aerodynamic components such 
as high aspect ratio wings and blades, in wind-induced deforma- 
tion of towers, antennas, and lightweight bridges, in hydrody- 
namic flows around offshore structures, and in the interaction 
of biofluids with elastic vessels. The greatest difficulty here 
lies when two-way coupling occurs between fluid and solid: 
viscous flow produces tractions that deform the solid, while 
deformation of the solid influences the flow field and thus fluid 
tractions. Solid deformation influences the flow both by altering 
the fluid domain as well as by creating solid tractions that must 
be in equilibrium with the fluid tractions. 

Because of its critical importance in aerospace applications, 
the problem of such nonlinear fluid-structure interaction has 
received considerable attention within the aerospace literature, 
where it is known as aeroelasticity. Classical approaches based 

on linear theory are well established [4, 9]. Certain nonlinear 
aeroelasticity phenomena have been amenable to analytical 
and semi-analytical study, and significant understanding of the 
physics of these problems has been elucidated in recent years 
[10], Recently, interest has increased in computational aero- 
elasticity, i.e., in developing methods for direct numerical ap- 
proximation of the governing nonlinear partial differential equa- 
tions of the fluid-solid system [16-18, 3, 19, 11]. This interest 
has been motivated by advances in computational fluid dynam- 
ics and computational structural mechanics, and in the rapid 
growth in computational power. 

The methods that have emerged within the past several years 
in the computational aeroelasticity literature employ different 
numerical approximations in fluid and solid domains, typically 
finite difference or volume methods for the fluid and finite 
elements for the solid. Fluid and solid are thus coupled c~er 
discretization. Since coupling is achieved after numerical ap- 
proximation and approximations may not be consistent across 
the interface, continuity of interface tractions cannot be rigor- 
ously assured. In some approaches, fluid and solid are solved 
separately using existing numerical codes; thus coupling con- 
sists of a mechanism to transmit interface tractions between 
the two codes. Examples include [16-19]. Other approaches 
solve the coupled discrete equations simultaneously as a single 
set of nonlinear algebraic equations (in the context of steady 
problems) [11]. These methods have been criticized for re- 
suiting in possibly ill-conditioned Jacobian matrices of the cou- 
pled system, due to the disparity in solid and fluid behavior 
[ 19]. However, one ought to be able to apply various numerical 
linear algebraic devices to overcome this problem, as we shall 
do here. Nonlinear fluid-solid interaction problems have also 
been approximated by purely finite element methods, e.g., [8, 
2, 1]. Coupling is again effected at the discrete level. 

In this article, we address the stationary fluid-solid interac- 
tion problem. We target this problem because of its importance 
in optimal design, in which a design is optimized under steady- 
state conditions. In steady problems, if the solid deformation 
is so small that it does not change the fluid domain, the coupling 
is only one-way. In other words, we may solve the fluid equa- 
tions, assuming a rigid solid, to obtain fluid tractions on the 
interface, and then to apply them to the solid to deform it. 
On the other hand, if the solid undergoes large deformation, 
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coupling is two-way, even if the flow is steady; thus, we are 
not able to solve the fluid problem independently of the solid. 
This latter case is the subject of this article. 

We are not aware of any variationally coupled numerical 
solutions of viscous fluid-finite elasticity interaction problems, 
a fact that motivates the present work. We develop a variational 
formulation that couples fluid and solid at the continuous level 
and thus assures continuity of interface tractions. We model 
the fluid by the stationary incompressible Navier-Stokes equa- 
tions in an Eulerian frame of reference, while a Lagrangian 
reference frame and large displacement-small strain theory are 
used for the solid. Once coupled, we can systematically apply 
a numerical approximation--a Galerkin finite element 
method-- to obtain a single set of nonlinear algebraic equations. 
We may then seek appropriate numerical methods for its solu- 
tion, which may include linear algebraic devices such as domain 
decomposition to avoid ill-conditioning. The two main advan- 
tages of this method are that the variational formulation auto- 
matically ensures continuity of interface tractions, and it can 
be systematically translated into a unified finite element method 
for the coupled problem. 

The rest of this paper is organized as follows. In Section 2, 
we develop the variational form of the viscous flow-finite 
elasticity interaction problem. A finite element approximation is 
constructed in Section 3, while Section 4 introduces a modified 
Newton method for solution of the resulting discrete system. 
The method is illustrated in Section 5 through the solution of 
a problem of flow-induced deformation of an infinite, elastic 
cylinder. We conclude with some remarks in Section 6. 

2. VARIATIONAL FORMULATION 

In this section we develop a variational formulation of the 
fluid-solid interaction problem in the context of a stationary, 
viscous, incompressible, Newtonian fluid, described by the 
Navier-Stokes equations, interacting with an isotropic 
piecewise-homogeneous elastic solid in a Lagrangian frame 
of reference. We assume that the solid is capable of large 
displacements, but that strains are smal l - -a  reasonable assump- 
tion for problems arising in aerospace, civil, and mechanical en- 
gineering. 

The finite nature of solid displacements implies a geometric 
dependence of the flow field on the solid displacement. Consider 
a solid of finite extent surrounded by an infinite fluid, as depicted 
in Fig. 1. Define I~F as the fluid domain, ~s  as the undeformed 
solid domain, F~ as a boundary approximating the fluid far- 
field on which transactions are prescribed, F~ as the portion of 
the far-field fluid boundary on which velocity is prescribed, 
Fs ~ as the undeformed solid boundary on which tractions are 
prescribed, F 2 as the undeformed solid boundary on which 
displacements are prescribed, F/° as the undeformed interface 
between solid and fluid, and F~ as the deformed interface be- 
tween solid and fluid. The fluid field quantities are the pressure 
p, the velocity vector v, the stress tensor or ,  and the rate of 

FIG. 1. Problem of fluid-solid interaction. 

strain tensor d. In the solid, the field quantities are the displace- 
ment vector u, the Piola-Kirchhoff stress tensor S, and the 
Green strain tensor E. We shall have occasion to refer to the 
solid Eulerian stress tensor, which we denote O's. Material 
constants are the fluid viscosity/xr and density p, and the Lam6 
moduli of the solid, A and ~s. We take ~ as the prescribed far- 
field fluid velocity, tr as the prescribed fluid traction, fi as the 
prescribed solid displacement, and ts as the prescribed solid 
traction. The fluid and solid body force are denoted fF and fs. 
Define FF = FIF U F~- and Fs = F~ U F~. We also define n as 
the unit outward normal to a deformed surface, no as the unit 
outward normal to an undeformed surface, n~ F as the unit normal 
to the deformed fluid-solid interface, directed away from the 
fluid, and n~ s as the unit normal to the deformed fluid-solid 
interface, directed away from the solid. 

The conservation of momentum, conservation of mass, con- 
stitutive law, and strain rate-velocity equations of the fluid are 

pr(v" V)v - div trF = fr in Dr (1) 

V • v = 0 in I~F (2) 

~r r = - -pI  + 2p.rd in f~F (3) 

d =-~(Vv + Vv x) in 12r. (4) 

The constitutive law, equilibrium equations, and strain-dis- 
placement relations of the solid are given by 

S = A tr(E)I + 2/.~sE in 12s (5) 

div[(I + Vu)S] = fs in 12s (6) 

E = ~ V u + V u  r + V u V u  T] inDs. (7) 

At the interface, coupling between fluid and solid requires that 
tractions and velocity be continuous: 

O'sn,~ + (rrn/~ = 0 on Ft (8) 
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v = t i = 0  onFi. (9) 

Here, fi is the solid velocity, which is zero, according to the 
steady nature of the problem. Thus we have a no-slip condition 
on fluid velocity at the interface. Finally, the boundary condi- 
tions take the form 

o'¢nF = i~- on F} (10) 

[ ( l + V u ) S l n o = i s  o n F }  ( 1 1 )  

v = re on F~ 

u = fi o n  Fs .  

placement in the definition of the domains of integration of the 
bilinear functionals a(', ") and b(', ") and the trilinear functional 
c ( . , . ,  .). The second term on the right side of (14) can be 
rewritten as 

f w" orrn dFF(U) = fr~ w" O'Fn dF):(u) 
r r 

+ fr~ w" O'Fn dF~-(u). 

(18) 

We shall require that the test function w satisfy the homoge- 
(12) neous essential boundary condition v = 0 on FF, implying that 

the second term on the fight of (18) is zero. Furthermore, since 
(13) tF is zero, and in light of (10) the first term on the right side 

of (18) vanishes. Therefore, 
Here we have used the symbols div and V to denote the spatial 
divergence and spatial gradient, respectively. See, for example, 
[15] for derivations of the governing equations of fluid and 
solid. Notice that the consequence of the small deformation 
assumption is to allow the use of Hooke's law for the solid 
constitutive relation (5). 

We now proceed to establish the variational form of the 
problem. Let us assume, for simplicity of presentation, that the 
fluid and solid do not experience body forces and that the fluid 
and solid prescribed tractions are zero, i.e., fF, fs, tF, and ts are 
all zero. First, we substitute the strain rate-velocity relationship 
(4) into the fluid constitutive law (3), which is in turn substituted 
into the conservation of momentum equation (1). Then, multi- 
plying the residual of the resulting equation by the test function 
w, integrating over the fluid domain, and applying Green's 
formula, we obtain the weak form of the conservation of mo- 
mentum equation, 

(14) 

f 
a(v, w) + b(p, w) + c(v, v, w) = j w • o'Fn dFl(u) 

r/ 

+ I W • OrFn  dFF(u), 
J F r 

f • = 0. (19) OrFn dFF(U) W 
r r 

Next, we write the conservation of mass equation in weak form 
by multiplying (2) by the test function q and integrating over 
the domain of the fluid: 

f " d ~ ' ~ F ( U )  = -b(q, v) = 0. (20) qV V 
fi r 

Again, note the dependence of the fluid domain, and thus the 
weak form, on the solid displacement. 

The weak form of the solid equilibrium equation is estab- 
lished by first substituting the expression for the Green's strain 
tensor (7) into the constitutive law (5) and then substituting 
the resulting expression for the Piola-Kirchhoff stress into the 
equilibrium equation. Multiplying the residual of the resulting 
equation by the test function r, integrating over the domain, 
and applying Green's formula, we obtain the weak form of the 
displacement form of the equilibrium equations, 

where 

a(v,w) = a zfnr/x-:£(vv + VvV)" (Vw + VwT)df l r (u )  (15) 

- f pV" wdl2r(U) (16) b(p, w) = nr 

f p W "  ( V "  V ) v d ~ ' ~ F ( U )  c ( v ,  v, w )  = nr (17) 

and where the symbol : denotes the scalar product of two ten- 
sors. Since we wish to consider problems in which the displace- 
ment of solid may be large enough to influence the flow, we 
indicate the dependence of the fluid domain on the solid dis- 

f Vr [(I + Vu)S(u)]  dDs 
[l s 

f r .  [(I + Vu) S(u)] no dFlo 
El o 

+ ( r -  [(I + Vu) S(u)] no dFs, 
J r s 

(21) 

where the relationship between Piola-Kirchhoff stress and dis- 
placement is given by 

S(u) =}A tr[Vu + Vu T + VuVu T] I 

+/Xs[VU + Vu T + VuVuT]. 
(22) 
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Notice that, since we are in a Lagrangian frame of reference, 
the unit normal is with respect to the undeformed geometry, and 
the interface is between fluid and undeformed solid, denoted 
F~,. The solid boundary Fs consists of  the portion on which 
displacements are specified, Fs, and the portion on which trac- 
tions are specified, F}. Thus, the second term on the right of  
(21) can be rewritten as 

f r .  [(I + ~7u) S(u)] no dFs 
r s 

= fr~ r .  [(I + ~7u) S(u)] no dF]  

+ fv~ r -  [(I + Vu)  S(u)] no dF~. 

(23) 

Since is is zero, and in light of  (11), the first term on the right 
of  this equation is zero. Furthermore, we shall require that the 
test function r satisfy the homogeneous essential boundary 
condition u = 0 on F]. Therefore, the second term vanishes 
over F]. Thus, 

f r .  [(I Vu)  S ( u ) ] n 0 d F s  (24) + 0. 
F s 

The first term on the right of  (21) can be transformed to the 
deformed geometry by noting that (I + ~ 'u)  S = T, the Lagran- 
gian stress tensor. The surface traction expressed in terms of 
the Lagrangian stress at a point s '  on the undeformed interface 
is identical to the surface traction expressed in terms of the 
Eulerian stress at its image s" on the deformed interface. Thus, 
we may write 

T ( s ' )  n0(s ')  = O's(S") n(s"). (25) 

so that (22) can be rewritten as S = S L + S 'v. Thus, the domain 
integral on the left side of  (21) can be rewritten as the sum of 
terms that depend linearly, quadratically, and cubically on the 
derivatives of u, 

f : [(I S(u)] dl2s d(u, r)  e(u, u, r)  V r  + Vu)  + 
I I  

+f(u ,  U, U, r), 

(30) 

where 

f 
d ( u , r ) = J  V r : S L ( u ) d l q s  (31) 

[1 s 

e(u,u,r)=f ~ 7 r : [ S U ( u ) + V u S L ( u ) ] d O s  (32) 

f (u ,  u, u, r) = ( ~7r : [~'u S N (u)] dos. (33) 
J 

II s 

The condition of continuity of  interface tractions can now 
be imposed. Adding Eqs. (14) and (21) and making use of  (19), 
(24), and (27), gives 

a(v,  w) + b(p, w) + c(v, v, w) + d(u, r) + e(u, u, r) 

+ f ( u ,  u, u, r )  = J w • (oF" n~ + o's" n~ s) dFi (u). 
r! 

(34) 

The fight side of  this equation is just zero, in view of the 
continuity of  traction condition (8). 

We are in a position now to state the unified variational form 
of the viscous flow-finite elasticity interaction problem: 

Find v E H0~(f~), p E L2(O), and u E HJ0(~) such that 

Therefore, provided 

r ( s ' )  = w(s"), (26) 

a(v,  w) + b(p, w) + c(v, v, w) + d(u, r)  

+ e(u, u, r) + f ( u ,  u, u, r) = 0 

for all w E H~ (~'~F), r E H~(12s) 
(35) 

i.e. the restriction of the test functions r to the undeformed 
interface is equal to the restriction of w to the deformed inter- 
face, the first term on the right side of  (21) can be rewritten as 

f r -  [(I I fu)  S(u)]n0dF~0 j w .  o-sndFi.  (27) 
g 

+ 
l't ° r t 

To simplify the left side of  (21), we separate S into S L, a 
tensor that depends linearly on displacement, and S N, one whose 
dependence is nonlinear, in fact, quadratic, 

S L = A tr(17u)I +/Zs(~ru + •u T) (28) 

S u -2-±A tr(~'u~ru T) I +/Zs (~ 'u~ru T) (29) 

b(q, v) = 0 for all q E Lz(OD, 

where the functionals a(. ,  -), b(., "), c( ' ,  -, .), d(-, .), e ( . , . ,  "), 
and f ( . ,  -, ", .) are defined by expressions (15), (16), (17), (31), 
(32), and (33), respectively. Here, H~(OF) is the Sobolev sub- 
space of all functions having one square integrable derivative 
over OF and that vanish on F~ and outside of  OF, L2(OD is 
the space of  functions that are square integrable over O r  and 
that vanish outside of  O r ,  and H~(Os)  is the Sobolev subspace 
of all functions having one square integrable derivative over 
Os and that vanish on F 2 and outside of  l~s. The essential 
boundary conditions v = ¢" and u = fi must be enforced on 
F~ and F~, respectively, as must the no-slip condition v = 0 
on F~. 
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3. FINITE ELEMENT APPROXIMATION 

Let us define the finite element approximations v~,, Ph, and uh, 

nt, 

v,, = ~ ~bi(x)vi (36) 
i=1  

tit' 

p,, = ~ Xj(x)p~ (37) 
)=1 

n u 

u,, = "~ ikk(X)Uk, (38) 
k = l  

where v~, pj, and uk are approximations of  velocity, pressure, 
and displacement at nodes i, j,  and k, respectively. The basis 
function families ~b~, Xj, and Oh define finite element spaces 
• ),, ~ , ,  and °R~, for velocity, pressure, and displacement, respec- 
tively: 

~,, = span{ 4~, ..... &,,"} 

~',, = span{x, ..... g,,"} 

~,, = span{ Ot ..... 0,,"}. 

(39) 

(40) 

(41) 

Let Vh C I ' I / ( [ ) , g ) ,  0.~ h C L 2 ( ~ ) , r ) ,  and °Rh C H~(~s) ;  i.e., the 
finite element spaces ~h, @h, and %,  are subspaces of  the 
infinite dimensional spaces in (35). In order to satisfy condition 
(26), we require that fluid velocity and solid displacement shape 
functions be identical, when restricted to the interface between 
solid and fluid. An example of  this is given by combining 
quadratic triangles in the solid with the Tay lo r -Hood  element 
in the fluid. The Tay lo r -Hood  element employs a quadratic 
approximation of velocity in conjunction with a linear approxi- 
mation of pressure; thus, solid displacement and fluid velocity 
shape functions are identical on the interface. 

Applying the Galerkin method to the problem (35) yields 
the discrete problem: 

Find vh E ~ff~,, Ph ~ @h, and uh E ~ ,  such that 

a(vh, wl,) + b(ph, wh) + c(vh, vh, wh) + d(uh, rh) 

+ e(u,, ,  u,,, r~,) + f(u, , ,  u,,, u,,, rh) = 0 

for all wh ~ ~h, rh ~ ~h,  

(42) 

and 

b(q, vh) = 0 for all q ~ ~h. 

n ~' = n~ + n}' 

np = w ;  + n p 

n ,  = n~ + nL  

(43) 

where the subscript F indicates the number of nodes belonging 
strictly to the fluid domain, S the number of nodes belonging 
strictly to the solid domain, and I the number of  nodes belonging 
to the interface. So, for example, the n ' velocity nodes are 
composed of n~ fluid domain nodes as well as n} interface 
nodes. Notice that the satisfaction of condition (26) implies 
that the number of velocity and displacement interface nodes 
are equal. Let us call this number nt: 

n / ~  n} = nl~. (44) 

Let the fluid velocity nodes be ordered such that nodes 1 .. . . .  
n~ lie on the interface and n~ + 1 ... . .  n" lie in the fluid domain 
as well as that portion of the fluid boundary on which tractions 
are prescribed. Similarly, the solid displacement nodes are 
ordered such that nodes 1 . . . . .  n~ lie on the interface and 
n~ + 1 ... . .  n" lie in the solid domain as well as that portion of 
the solid boundary on which tractions are prescribed. 

We are able now to elucidate the structure of the discrete 
problem (42). In the fluid, we have the n5 discrete conservation 
of  momentum equations 

tl t' tip 

2 a(6,, 6,)o, + 2 b(xi, d,b,)p2 
i~l j=l 

ii [' 

+ ~ c(4~. 4'. 6,)V,Vr = O. 
i .r= 1 

I = I I  I q -  1 . . . . .  r l  u ,  

(45) 

and the n~- discrete conservation of mass equations 

~b(x,,,, dpi)oi = 0, m = n~' + 1 ..... n;'. (46) 
i=1  

In the solid, the nS. discrete equilibrium equations are given by 

n u n u 

d(Ok, ~,,)uk + ~ e(Ok, 0,,  ~b,,)u~u~ 
k = l  k,.~= I 

/i f` 

+ ~ f(Ok, q/~, ~,, O,)u~u., u, = O, (47) 
k . sd= I 

The discrete problem (42) is a system of nonlinear algebraic 
equations. To show the explicit form of these equations, let us 
first distinguish between nodes lying in the interior and those 
on the interface. Let 

/7 = t'/! -I- 1 . . . .  , n Et. 

Finally, on the interface, we have the nl discrete traction conti- 
nuity equations, 
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n v nP tl m 

E a(~ i, ~)y )Di "~ E b(xJ, ~I~y)PJ "~ E c(~)i, ~l~r, ~l~y )l')il')r 
i=1 j=l  i . r = l  

+ 

+ 

n u 

d(m,, ,~,,)u, + 
k=l 

n u 

k . s  = I 

n u 

f(~b~, ~, ,  ~,, 
k , s . t =  I 

~,)uw,u,=O, 
(48) 

y : 1, .... nt, 

and the n~ discrete conservation of mass equations, 

nt, 

b(x: ,  dpi)vi = 0, z = 1 ..... rip. (49) 
i = l  

Let us define vectors of  unknown nodal quantities: let v~ 
,~"~ represent the fluid nodal velocities, PF @ ,~"~ the fluid 
pressures, v~ ~ ~", the interface velocities, p~ ~ ~"," the inter- 
face pressures, Us ~ .~"] the solid displacements, and ut 
~", the interface displacements. We can rewrite the discrete 
equations (45)-(49) symbolically as 

Let us first begin by rewriting (50) as 

hr(x~, x,) = 0 

hs(xs, x~) = 0 

ht(xe, Xs, xt) = 0, 

(51) 

where 

hr=ih  
[ h f J  p, 

Xs=Us,  x l = u /  (52) 

Note that the fluid equations he = 0 include the equations for 
conservation of mass on the interface, h~ = 0, and the fluid 
variables xr include the interface pressures p~. Accordingly, the 
interface variables consist only of  the interface displacements. 
The reason for this choice of  partitioning will become apparent. 

Newton 's  method for the nonlinear system h(x) = 0 consists 
of  iterating on solution of the linear system 

h~(vr, PF, v/, P/, u/) = 0 

h~(v,~, v~, u,) = 0 

h~(us, u/) = 0 

h/(vr, Pr, v/, P/, Us, ul) = 0 

h~(vr, v/, u/) = 0, 

(50) 

where h~ E 9]"~ represents conservation of momentum in the 
nP . u . fluid, h~ E ~ r conservation of mass in the fluid, h ] E  ,~"s eqm- 

librium in the solid, h~ E 9~ °, continuity of  interface tractions, 
and h~ ~ ,~",~ conservation of mass on the interface. It appears 
that we have n ° + r/p q- n" - nt equations in n o + nP + n" 
unknowns. However,  the continuity of  interface velocity condi- 
tion (9) implies that v~ = 0, and we are thus left with an 
equal number of  equations and unknowns upon enforcing this 
condition in (50). 

Note that, in addition to h}, the fluid and interface residuals 
h~, he, h~, and h~ depend on the interface displacements u~. 
This is implied in the domain of integration of the functionals 
a(., .) (15), b(., .) (16), and c(. , . ,  .) (17), i.e., in the dependence 
of the flow on the interface geometry. 

J ( x k ) ( x  k + ' -  x k) = - h ( x  k) (53) 

until convergence, given an initial iterate x °. Here, J is the 
Jacobian of h with respect to x. A Newton step for the discrete 
system (51) takes the form 

L J ~  J~s J ~ +  J~s J (Ax ,  J [ h~J  

(54) 

where 

Ax = x k÷~ - x£ (55) 

Here, the superscript k indicates evaluation of the residual h 
and the Jacobian J at the point x k, and the interface-interface 
coupling matrix JH includes contributions from both solid 
and fluid: 

J ,  = J,F + J,s (56) 

4. SOLUTION OF THE DISCRETE SYSTEM 

We discuss in this section a Newton-like method for solving 
the system of nonlinear algebraic equations (50). Our discussion 
will be kept brief; a more extensive discussion of  this and other 
solution methods for finite element approximations of  viscous 
flow-finite elasticity interaction will be presented in the fu- 
ture [12]. 

The Newton iteration (54) entails two difficulties. First, the 
Jacobian matrix, because of the disparity between fluid and 
solid behavior, can be very ill-conditioned. Second, the cou- 
pling terms between fluid and interface variables in general 
render the matrices JF~ and J ~  dense. The density of  these 
matrices is a consequence of  the dependence of  the domains 

• of  integration of a(., .), b(., .), and c(., -, .) on the interface 
displacements. In the case of  Jrt, all fluid nodal velocities and 
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pressures may be coupled to all interface nodal displacements, 
since a change in any interface displacement potentially moves 
the fluid mesh everywhere. The matrix J ' r  derives its density 
from the fact that the interface traction continuity equation (48) 
includes contributions from the first layer of fluid elements, 
which change with a movement in the interface. Thus, the 
potential exists for coupling between all interface variables. 
J,~ contains nonzeroes contributed by the solid terms in (48), 
i.e., the terms involving d(., .), e(., . ,  .), and f(- , . ,  -). These are 
just the standard solid stiffness matrix coupling terms, so the 
coupling is local in nature. 

The exact sparsity pattern depends on the moving mesh 
scheme employed, but, in general, the storage requirements and 
arithmetic complexity associated with Jrt and J ' r  can be quite 
severe. Therefore, we consider an approximate Newton's 
method obtained by ignoring the fluid-interface coupling ma- 
trix Jr~ and the contribution of the fluid to the interface-interface 
coupling matrix, J , .  The resulting Jacobian in (54) becomes 
block-lower triangular. Thus, the fluid variables can be found 
by solving the linear system 

JkFFAXF = -h~- (57) 

for Axr. The change in the displacements (both interior and 
interface) can then be found by solving 

J~s J~,sJ [- Ax, J h~ + J~rAXrJ' 
(58) 

This method avoids the ill-conditioning associated with the 
coupled problem by employing a "domain decomposition" into 
separate fluid and solid subdomains. Large storage requirements 
associated with geometric coupling matrices are avoided by 
ignoring these terms while constructing the Jacobian. However, 
since the residual in (54) is calculated correctly, we are guaran- 
teed that, if the method converges, it must converge to the 
correct solution. This can be seen from (53): the only way that 
Ax can be zero is for h to be zero, provided only that J is 
nonsingular, regardless of whether or not it represents the true 
Jacobian. The price we pay for this approximate Jacobian is 
that we must give up the Newton guarantee of local qua- 
dratic convergence. 

We now establish that the modified Jacobian is indeed non- 
singular. First, the fluid step (57) can be seen to be just a 
Newton step for the Navier-Stokes equations, with a rigid 
boundary given by the current deformed interface, and a no- 
slip boundary condition imposed on the interface. Thus, the 
linear system (57) has a unique solution (provided, of course, 
that we are away from singular bifurcation or turning points). 
Second, the solid step (58) can also be regarded as a Newton 
step for the solid equilibrium equations. The term J~FAXr is the 
incremental "loading" that the linearized fluid induces on the 

solid interface. So this linear step too must have a unique 
solution (provided again we are away from buckling points). 
Thus, the solution of (54) is unique, and the approximate Jaco- 
bian is nonsingular. 

We stress that this decoupling is a numerical device designed 
to remedy the twin problems of ill-conditioning and storage 
and arithmetic complexity. The residual equations h = 0 still 
contain the correct variational coupling between fluid and solid, 
and the solution reflects that--only the convergence rate to the 
solution is affected. 

5. EXAMPLE: FLOW-INDUCED DEFORMATION OF AN 
INFINITE ELASTIC CYLINDER 

We have built a code that implements the finite element 
approximation of Section 3 in two dimensions and solves the 
resulting nonlinear algebraic system using the method of New- 
ton form described in Section 4. We employ a simple continua- 
tion strategy to help globalize the solution. Our code discretizes 
both solid and fluid with triangular elements and uses quadratic 
shape functions for velocity and displacement and linear shape 
functions to approximate pressure. The Taylor-Hood element 
pair is known to satisfy the Ladyzhenskaya-Babuska-Brezzi 
stability condition, e.g., [5], and the complimentary choice of 
quadratic triangles for the solid ensures the satisfaction of the 
interface compatibility condition (26). The Taylor-Hood ele- 
ment produces L2 norm errors of order h 3 for velocity and h 2 for 
pressure [14], while quadratic triangles for elasticity problems 
produce L2 norm errors of order h 3 for displacements [6] (pro- 
vided in both cases the solution is sufficiently smooth). The 
linear solves (57) and (58) are performed using the unsymmetric 
multifrontal sparse LU factorization code UMFPACK [7]. 

As the solid deformations change from one iteration to the 
next, the movement of the fluid mesh is computed by the so- 
called elastic analogy, a common technique in the aeroelasticity 
literature. The fluid domain is treated as an elastic solid, and 
the move in the location of the interface is expressed through 
imposed displacements. Solution of this elastic analogy yields 
the change in location of fluid nodes. This technique was appar- 
ently first used in [1]. 

In order to illustrate our methodology, we next present results 
of a physical problem solved by our code. The problem is 
viscous flow about an infinite elastic cylinder, and is depicted 
in Fig. 2. The problem thus is two-dimensional. The cylinder 
is of diameter d and thickness t and is composed of material 
having elastic modulus E and Poisson ratio u. The fluid is 
characterized by density p and viscosity/z. The computational 
domain extends a distance of 6d upstream of the cylinder, 18d 
downstream, and 12d above and below its center. Flow is from 
left to right with a free-stream horizontal velocity of U and 
no vertical velocity. Boundary conditions downstream of the 
cylinder are that the flowfield is traction-free. On the top and 
bottom boundaries are imposed zero vertical flow and zero 
horizontal traction. Both vertical and horizontal components of 
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FIG. 2. Stationary flow passing an elastic circular cylinder. 

TABLE I 

Mesh Data 

Item Number 

Solid nodes 416 
Fluid nodes 3552 
Interface nodes 104 
Boundary nodes 152 
Total nodes 4224 

Solid elements 208 
Fluid elements 1840 
Total elements 2048 

displacement are fixed at nodes along the horizontal axis of 
symmetry at the downstream end of the cylinder. Nodes lying 
on the upstream end of the horizontal axis of symmetry are 
prevented from moving vertically but are free to translate hori- 
zontally. The inner boundary of the cylinder is traction-free. 
Two cases are solved: one for which the cylinder is nearly rigid 
and one for which the cylinder is quite flexible. 

Values of p,/~, d, and U used in the computation are given 
in the figure. These correspond to a Reynolds number of about 
50, which is kept low to prevent the formation of the Kfirmfin 
vortex street. A Poisson ratio of 0.3 is taken for the solid. The 
undeformed mesh is shown in Fig. 3. Although it cannot be 
seen in the figure, two quadratic elements are used through the 
thickness of the cylinder. 

Data describing the mesh are given in Table I. A convergence 
criterion of Ilhll -< 10-6 is used to terminate the Newton iteration 
at each continuation step. 

Figure 4 shows streamlines corresponding to the converged 
flowfield in the vicinity of the cylinder for the case of the nearly 
rigid cylinder (E = 10000, t = 0.06). Figure 5 shows a close- 
up of the velocity field for this case. The resulting displacement 
of the cylinder is negligible and does not affect the flow field. 
Two standing eddies of moderate size, symmetric about the 
horizontal axis, are observed behind the cylinder, as expected 
for flow around a rigid cylinder in this regime. 

Figure 6 shows the resulting displacement and a portion of 
the flow field when the cylinder is more flexible (E = 1000, 

Velocity unknowns 7166 
Pressure unknowns 984 
Displacement unknowns 824 
Interface unknowns 205 
Total unknowns 9179 

t = 0.02) and thus undergoes large displacement. A close-up 
view of the velocity field for this case is depicted in Fig. 7. 
The undeformed shape of the cylinder is shown in addition to 
the deformed shape. The flow field depicted corresponds to the 
Converged solution, i.e., to the deformed shape. The standing 
eddies extend more than twice as far downstream as in the 
rigid case, due to the much more bluff shape assumed by the 
deformed cylinder. 

In the latter case of the elastic cylinder, convergence is ob- 
tained in a total of 38 iterations by a simple continuation 
scheme, first increasing the Reynolds number to the desired 
value, then decreasing the solid stiffness. The iteration history 
for the case of the elastic cylinder is shown in Fig. 8. 

The abscissa represents cumulative Newton (linear) steps. 
The ordinate represents the value of the residual for the given 
values of Reynolds number and solid stiffness. As the figure 
shows, the appropriate nonlinear parameter is advanced when 
the residual falls below the convergence tolerance, always using 
the converged field quantities corresponding to the previous 
parameter to initiate the approximate Newton method. The 
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FIG. 3. Finite element mesh. 
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Streamlines about a nearly rigid cylinder. 



FLUID-SOLID INTERACTION 355 

. . . .  t.i 

, j  

i 

I 

FIG. 5. Close-up view of the velocity field corresponding to the nearly 
rigid cylinder. 
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FIG. 8. Iteration history showing continuation steps and cumulative New- 
ton iterations. 
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FIG. 7. Close-up view of the velocity field corresponding to the elastic 
cylinder. 

dotted line indicates increasing Reynolds number, while the 
solid line represents decreasing solid stiffness. Although the 
convergence scheme is conservative, it is quite effective, and 
we have been able to solve a number of flow-induced large 
displacement problems using it. 

6. CONCLUDING REMARKS 

We have developed a methodology for numerical approxima- 
tion of the interaction of a stationary viscous fluid with a elastic 
solid that undergoes large displacement. The fluid is modeled 
with respect to an Eulerian frame of reference by the stationary 
incompressible Navier-Stokes equations, while a Lagrangian 
reference frame and large displacement-small deformation the- 
ory is used for the solid. A variational formulation of the prob- 
lem is developed that ensures satisfaction of continuity of inter- 
face tractions and velocities. The variational formulation is 
approximated by a Galerkin finite element method, yielding 
a system of nonlinear algebraic equations is unknown fluid 
velocities and pressures and solid displacements. A Newton- 
like method is introduced for solution of the discrete system. 
The method employs a modified Jacobian that enables decom- 
position into separate fluid and solid subdomains. This domain 
decomposition avoids possible ill-conditioning of the Jacobian, 
as well as the need to compute and store geometric coupling 
terms between fluid and interface shape. The method is illus- 
trated by solution of a problem of the flow-induced large defor- 
mation of an elastic cylinder. 

Work is underway to extend the methodology to unsteady 
problems. In another thrust, we have developed methods for 
sensitivity analysis of the models described here [ 13]. Together, 
these methods should prove useful for solving problems in 
multidisciplinary design optimization. 
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